Search results

1 – 2 of 2
Article
Publication date: 12 January 2022

Mahesh Babu Mariappan, Kanniga Devi, Yegnanarayanan Venkataraman, Ming K. Lim and Panneerselvam Theivendren

This paper aims to address the pressing problem of prediction concerning shipment times of therapeutics, diagnostics and vaccines during the ongoing COVID-19 pandemic using a…

1069

Abstract

Purpose

This paper aims to address the pressing problem of prediction concerning shipment times of therapeutics, diagnostics and vaccines during the ongoing COVID-19 pandemic using a novel artificial intelligence (AI) and machine learning (ML) approach.

Design/methodology/approach

The present study used organic real-world therapeutic supplies data of over 3 million shipments collected during the COVID-19 pandemic through a large real-world e-pharmacy. The researchers built various ML multiclass classification models, namely, random forest (RF), extra trees (XRT), decision tree (DT), multilayer perceptron (MLP), XGBoost (XGB), CatBoost (CB), linear stochastic gradient descent (SGD) and the linear Naïve Bayes (NB) and trained them on striped datasets of (source, destination, shipper) triplets. The study stacked the base models and built stacked meta-models. Subsequently, the researchers built a model zoo with a combination of the base models and stacked meta-models trained on these striped datasets. The study used 10-fold cross-validation (CV) for performance evaluation.

Findings

The findings reveal that the turn-around-time provided by therapeutic supply logistics providers is only 62.91% accurate when compared to reality. In contrast, the solution provided in this study is up to 93.5% accurate compared to reality, resulting in up to 48.62% improvement, with a clear trend of more historic data and better performance growing each week.

Research limitations/implications

The implication of the study has shown the efficacy of ML model zoo with a combination of base models and stacked meta-models trained on striped datasets of (source, destination and shipper) triplets for predicting the shipment times of therapeutics, diagnostics and vaccines in the e-pharmacy supply chain.

Originality/value

The novelty of the study is on the real-world e-pharmacy supply chain under post-COVID-19 lockdown conditions and has come up with a novel ML ensemble stacking based model zoo to make predictions on the shipment times of therapeutics. Through this work, it is assumed that there will be greater adoption of AI and ML techniques in shipment time prediction of therapeutics in the logistics industry in the pandemic situations.

Details

The International Journal of Logistics Management, vol. 34 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 5 July 2022

Mahesh Babu Mariappan, Kanniga Devi, Yegnanarayanan Venkataraman and Samuel Fosso Wamba

The purpose of this study is to present a large-scale real-world comparative study using pre-COVID lockdown data versus post-COVID lockdown data on predicting shipment times of…

Abstract

Purpose

The purpose of this study is to present a large-scale real-world comparative study using pre-COVID lockdown data versus post-COVID lockdown data on predicting shipment times of therapeutic supplies in e-pharmacy supply chains and show that our proposed methodology is robust to lockdown effects.

Design/methodology/approach

The researchers used organic data of over 5.9 million records of therapeutic shipments, with 2.87 million records collected pre-COVID lockdown and 3.03 million records collected post-COVID lockdown. The researchers built various Machine Learning (ML) classifier models on the two datasets, namely, Random Forest (RF), Extra Trees (XRT), Decision Tree (DT), Multi-Layer Perceptron (MLP), XGBoost (XGB), CatBoost (CB), Linear Stochastic Gradient Descent (SGD) and the Linear Naïve Bayes (NB). Then, the researchers stacked these base models and built meta models on top of them. Further, the researchers performed a detailed comparison of the performances of ML models on pre-COVID lockdown and post-COVID lockdown datasets.

Findings

The proposed approach attains performance of 93.5% on real-world post-COVID lockdown data and 91.35% on real-world pre-COVID lockdown data. In contrast, the turn-around times (TAT) provided by therapeutic supply logistics providers are 62.91% accurate compared to reality in post-COVID lockdown times and 73.68% accurate compared to reality pre-COVID lockdown times. Hence, it is clear that while the TAT provided by logistics providers has deteriorated in the post-pandemic business climate, the proposed method is robust to handle pandemic lockdown effects on e-pharmacy supply chains.

Research limitations/implications

The implication of the study provides a novel ML-based framework for predicting the shipment times of therapeutics, diagnostics and vaccines, and it is robust to COVID-19 lockdown effects.

Practical implications

E-pharmacy companies can readily adopt the proposed approach to enhance their supply chain management (SCM) capabilities and build resilience during COVID lockdown times.

Originality/value

The present study is one of the first to perform a large-scale real-world comparative analysis on predicting therapeutic supply shipment times in the e-pharmacy supply chain with novel ML ensemble stacking, obtaining robust results in these COVID lockdown times.

Details

International Journal of Physical Distribution & Logistics Management, vol. 52 no. 7
Type: Research Article
ISSN: 0960-0035

Keywords

1 – 2 of 2